A Local-Search Algorithm for Steiner Forest

M. Groß, A. Gupta, A. Kumar, J. Matuschke, D. Schmidt, J. Verschae M. Schmidt

Highlights of Algorithms 2017, Berlin

June 10th 2017

The Steiner Forest Problem

Input

 $\begin{array}{ll} \mathsf{Graph} & G = (V, E) \\ \mathsf{Terminal pairs} & (s_1, \bar{s}_1), \dots, (s_k, \bar{s}_k) \in V \times V \\ \mathsf{Edge costs} & c : E \to \mathbb{R}^+ \end{array}$

Output

Minimum cost forest $F \subseteq E$ containing $s_i \cdot \bar{s}_i$ -path for all $i = 1, \dots, k$

The Steiner Forest Problem

Input

 $\begin{array}{ll} \mathsf{Graph} & G = (V, E) \\ \mathsf{Terminal pairs} & (s_1, \bar{s}_1), \dots, (s_k, \bar{s}_k) \in V \times V \\ \mathsf{Edge costs} & c : E \to \mathbb{R}^+ \end{array}$

Output

Minimum cost forest $F \subseteq E$ containing $s_i \cdot \bar{s}_i$ -path for all $i = 1, \dots, k$

The Steiner Forest Problem

Input

 $\begin{array}{ll} \mathsf{Graph} & G = (V, E) \\ \mathsf{Terminal pairs} & (s_1, \bar{s}_1), \dots, (s_k, \bar{s}_k) \in V \times V \\ \mathsf{Edge costs} & c : E \to \mathbb{R}^+ \end{array}$

Output

Minimum cost forest $F \subseteq E$ containing $s_i \cdot \bar{s}_i$ -path for all $i = 1, \dots, k$

The Steiner Tree Problem

Input

Graph	G = (V, E)
Terminals	$s_1,\ldots,s_k\in$
Edge costs	$c: E \to \mathbb{R}^+$

Output

Minimum cost tree $T \subseteq E$ containing all s_i

V

The Minimum Spanning Tree Problem

Input

Graph	G = (V, E)
Terminals	V
Edge costs	$c: E \to \mathbb{R}^+$

Output

Minimum cost tree $T \subseteq E$ containing all v

Example: Local search for MST with euclidean distances

- Start from arbitrary feasible solution.
- ② Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for MST with euclidean distances

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for MST with euclidean distances

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for MST with euclidean distances

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for MST with euclidean distances

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for MST with euclidean distances

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for MST with euclidean distances

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for MST with euclidean distances

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for MST with euclidean distances

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for MST with euclidean distances

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for MST with euclidean distances

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap → Local optimum reached.

Example: Local search for MST with euclidean distances

- Start from arbitrary feasible solution.
- each next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.
- For MST, this is optimal!
- \rightsquigarrow 2-approximation for Steiner Tree

Choose ℓ and k with $\ell \gg k$

Need to remove more than O(1) edges.

Choose ℓ and k with $\ell \gg k$

Need to remove more than O(1) edges.

- Insert edge of cost ℓ
- Unless more than k edges are removed, no improving move.
- Local OPT $> \ell^2/k$ vs. global OPT 2ℓ .

Choose ℓ and k with $\ell \gg k$

Need to remove more than O(1) edges.

- Insert edge of cost ℓ
- Unless more than k edges are removed, no improving move.
- Local OPT $> \ell^2/k$ vs. global OPT 2ℓ .

• Solid edges cost 4, dashed edges cost 1.

- Solid edges cost 4, dashed edges cost 1.
- Locally optimal for many simple swaps.

- Solid edges cost 4, dashed edges cost 1.
- Locally optimal for many simple swaps.
- More general version of this example: $\Omega(\log n)$ approximation factor.

- Solid edges cost 4, dashed edges cost 1.
- Locally optimal for many simple swaps.
- More general version of this example: $\Omega(\log n)$ approximation factor.
- Reason lies in high girth.

- Solid edges cost 4, dashed edges cost 1.
- Locally optimal for many simple swaps.
- More general version of this example: $\Omega(\log n)$ approximation factor.
- Reason lies in high girth.

Solution: Complex puzzle with a potential function and involved local steps.

- Solid edges cost 4, dashed edges cost 1.
- Locally optimal for many simple swaps.
- More general version of this example: $\Omega(\log n)$ approximation factor.
- Reason lies in high girth.

Solution: Complex puzzle with a potential function and involved local steps.

Theorem

There is a non-oblivious local search algorithm for the Steiner Forest Problem with a constant locality gap.